

81

C H A P T E R

5

Been Cracked? Just Put
PAM On It!

Pluggable Authentication Modules

A

lthough pluggable authentication mod-
ules (PAM) cannot protect your system after it has been compromised, it can
certainly help prevent the compromise to begin with. It does this through a
highly configurable authentication scheme. For example, conventionally UNIX
users authenticate themselves by supplying a password at the password
prompt after they have typed in their username at the

login

 prompt. In many
circumstances, such as internal access to workstations, this simple form of
authentication is considered sufficient. In other cases, more information is
warranted. If a user wants to log in to an internal system from an external
source, like the Internet, more or alternative information may be required—
perhaps a one-time password. PAM provides this type of capability and much
more. Most important, PAM modules allow you to configure your environment
with the necessary level of security.

This chapter describes the use of pluggable authentication modules for
Linux (Linux-PAM or just PAM

1

), as distributed with Red Hat 5.2/6.0, which
provides a lot of authentication, logging, and session management flexibility.
We generally describe PAM and its configuration, take a look at many of the
available PAM modules,

2

 and consider a number of examples.

1. Pluggable authentication modules were originally developed by Sun Microsystems, Inc.
2. Pluggable authentication modules modules (PAM modules) is brought to you by the depart-

ment of redundancy department.

Linux05 Page 81 Monday, February 7, 2000 10:06 AM

82 Been Cracked? Just Put PAM On It! Chap. 5

Most recent Linux distributions include PAM. If your version does not,
check out the web site:

http://www.kernel.org/linux/libs/pam/

There you will find source code and documentation. It is well worth the effort
to download, compile, and integrate PAM into your system.

PAM provides a centralized mechanism for authenticating all services. It
applies to

login

, remote logins (

telnet

 and

rlogin

 or

rsh

),

ftp

, Point-to-Point
Protocol (PPP), and

su

, among others. It allows for limits on access of applica-
tions, limits of user access to specific time periods, alternate authentication
methods, additional logging, and much more. In fact, PAM may be used for
any Linux application! Cool! Let’s see how it works.

PAM O

VERVIEW

In this section, we will describe the way in which PAM operates, generally
how to configure PAM, and the keywords and options associated with the PAM
configuration files. Figure 5.1 presents an overview diagram of the Linux-
PAM interaction with Linux applications. This diagram depicts the major
components of a PAM implementation—applications, such as

login

,

ftp

,

su

,
etc.; the Linux-PAM engine (the PAM libraries, found in

/lib

), which is

Fig. 5.1 Linux-PAM Overview

Linux-PAM

Applications

PAM Modules

Configuration Files

/etc/pam.d/

1

2

3

4

/lib/security/

Linux05 Page 82 Monday, February 7, 2000 10:06 AM

 PAM Overview 83

responsible for loading the necessary PAM modules based on the configuration
files. The general flow of execution follows:

1.

The application—for example

login

—makes an initial call to Linux-
PAM.

2.

Linux-PAM locates the appropriate configuration file in

/etc/pam.d

 (or,
alternatively,

/etc/pam.conf

) to obtain the list of modules necessary for
servicing this request.

3.

Linux-PAM then loads each module in the order given in the configura-
tion file for processing. Depending upon configuration parameters, not all
modules listed in the configuration file will necessarily be invoked.

4.

Some, or all, of the modules may need to have a

conversation

 with the
user through the calling application. This conversation normally
includes prompting the user for some sort of information, like a password
or challenge, and receiving a response. If the user’s response satisfies the
particular PAM module, or if the PAM module is satisfied in some other
way, control is passed back to Linux-PAM for processing of the next mod-
ule (steps 3 and 4 being repeated for each module in the configuration file
associated with the application in question). Ultimately, the processing
completes with either success or failure. In the case of failure, it is gener-
ally true that the error message displayed to the user will not be indica-
tive of the cause of failure. This generic error messaging approach is a
security feature since it limits information that could be used in compro-
mise efforts. Fortunately, most PAM modules offer varying levels of log-
ging, allowing system administrators to track down problems and
identify security violations.

PAM Configuration

There are two different PAM configuration compile-time options. The first
causes PAM either to use a single

/etc/pam.conf

 file as its configuration file or
to look for a collection of configuration files in

/etc/pam.d

, but not both. The
second option uses both mechanisms and entries in

/etc/pam.d

 directory over-
ride those in

/etc/pam.conf

. The first option is recommended and reflects the
implementation used by the Red Hat 5.2/6.0 distributions.

There is little difference between using a single

/etc/pam.conf

 and a
collection of files in

/etc/pam.d

. Essentially, if you are using

/etc/pam.conf

,
each entry in

/etc/pam.conf

 contains a leading service-type field that speci-
fies the PAM-aware application to which this entry pertains. If you use

/etc/

pam.d

, you will find a file in that directory whose name matches a PAM-aware
application. Consequently, the service-type field is dropped from each of
these files. We will discuss the configuration options under the assumption of
the use of

/etc/pam.d

. For those of you who use

/etc/pam.conf

, just add the
service type to the entries described here.

Linux05 Page 83 Monday, February 7, 2000 10:06 AM

84 Been Cracked? Just Put PAM On It! Chap. 5

Let’s begin by taking a look at the contents of

/etc/pam.d

, shown in
Example 5-1. This effectively lists the PAM-aware applications that ship with
the Red Hat 5.2 distribution (6.0 is similar). Each of the files listed has a PAM-
aware application associated with it. In all of these configuration files, lines
beginning with

#

 are comment lines and are ignored by PAM.

Each of the PAM configuration files contains the entry types shown in
Example 5-2. The

module-type

 field specifies the type of PAM module. Cur-
rently there are four module types,

auth

,

account

,

session

, and

password

. They
are described in Table 5.1.

The

control-flag

 field specifies the action to be taken depending on the
result of the PAM module. More than one PAM module may be specified for a
given application (this is called

stacking

). The

control-flag

 also determines
the relative importance of modules in a stack. As we will see, stack order and

control-flags

 are very significant. The four possible values for this field are

required

,

requisite

,

optional

, and

sufficient

. They are summarized in
Table 5.2.

The

module-path

 field indicates the absolute pathname location of the
PAM module. Red Hat 5.2/6.0 places all PAM modules in

/lib/security

.
(Table 5.15 on page 110 provides an overview of many of the available PAM
modules, both from the Red Hat distribution and the public domain.)

Example 5-1

Contents of

/etc/pam.d

ls /etc/pam.d
chfn linuxconf-pair ppp su
chsh login rexec vlock
ftp mcserv rlogin xdm
imap other rsh xlock
linuxconf passwd samba

Example 5-2

PAM Configuration File Entry Fields

module-type control-flag module-path arguments

Table 5.1 PAM Module Types

Module Type Description

auth The auth module instructs the application to prompt the user for identifica-
tion such as a password. It may set credentials and may also grant privileges.

account The account module checks on various aspects of the user’s account such as
password aging, limit access to particular time periods or from particular loca-
tions. It also may be used to limit system access based on system resources.

session The session module type is used to provide functions before and after session
establishment. This includes setting up an environment, logging, etc.

password The password module type is normally stacked with an auth module. It is
responsible for updating the user authentication token, often a password.

Linux05 Page 84 Monday, February 7, 2000 10:06 AM

 PAM Overview 85

The arguments field is used for specifying flags or options that are passed
to the module. Specifying arguments is optional. There are certain general
arguments available for most modules which are listed in Table 5.3. Other
arguments are available on a per-module basis and will be discussed appropri-
ately with each module.

In summary, each file in /etc/pam.d is associated with the service or
application after which the file is named and contains a list of records, each of
which contains a module type, control flag, module name and location, and
optional arguments. If the modules are of the same type, they are considered to
be stacked and will be executed in the order in which they appear, unless con-
trol flags terminate execution earlier. The entire stack, not just one module,

Table 5.2 PAM Control Flags

Control Flag Description

required This module must return success for the service to be granted. If this module
is one in a series of stacked modules, all other modules are still executed. The
application will not be informed as to which module or modules failed.

requisite As above, except that failure here terminates execution of all modules and
immediately returns a failure status to the application.

optional As the name implies, this module is not required. If it is the only module, how-
ever, its return status to an application may cause failure.

sufficient If this module succeeds, all remaining modules in the stack are ignored and
success is returned to the application. In particular, if the module succeeds,
this means that no subsequent modules in the stack are executed, regardless
of the control flags associated with the subsequent modules. If this module
fails it does not necessarily cause failure of the stack, unless it is the only mod-
ule in the stack.

Table 5.3 PAM Standard Arguments

Standard Arguments Description

debug Generates additional output to the syslog* utility. Most PAM mod-
ules support this argument. Its exact definition depends on the mod-
ule to which this argument is supplied.

*The syslog utility is discussed in detail in Chapter 8.

no_warn Do not pass warning messages to the application.

use_first_pass This module will use the password from the previous module. If it
fails, no attempt is made to obtain another entry from the user. This
argument is intended for auth and password modules only.

try_first_pass As above, except that, if the password fails, it will prompt the user for
another entry. This argument is intended for auth and password mod-
ules only.

Linux05 Page 85 Monday, February 7, 2000 10:06 AM

86 Been Cracked? Just Put PAM On It! Chap. 5

controls behavior for the given service and module type. Arguments are option-
ally used to further control the behavior of the module.

Now let’s see how this mechanism is actually implemented.

PAM ADMINISTRATION

One of the joys of working with freely available software is that it is often
poorly or incorrectly documented or it doesn’t work quite right (or at all!).
There are various news groups to which you may post queries (see Appendix
A), and some vendors (such as Red Hat and S.u.S.E.) maintain their own mail-
ing lists which are helpful from time to time. Often, however, you will find
yourself having to figure it all out on your own. This section will go beyond the
currently available documentation and hopefully will give you a good start on
using PAM.

PAM and Passwords

We begin by taking a look at how PAM may be used to control password
choices and password aging. Example 5-3 shows the /etc/pam.d/passwd config-
uration file. Notice that there are two entries with the password module type.
This is an example of stacked entries. Let’s go through these entries in detail.
It gets a little complicated, but once we get through it, the rest of this chapter
should be easier to understand.

The Password Database Library The /lib/security/pam_pwdb module inter-
acts with and requires the password database library (pwdb library, libpwdb,
found in /lib). The purpose of the pwdb library is to provide a centralized data-
base for lookups of information associated with users and groups. Specifically,
it provides the source of passwords for pam_pwdb.

The pwdb library requires an /etc/pwdb.conf configuration file. Example
5-4 shows a sample file. The file contains two distinct sections—the first, pre-
ceded by the user: keyword, pertains to information associated with users.

Example 5-3 The /etc/pam.d/passwd Configuration File

auth required /lib/security/pam_pwdb.so
account required /lib/security/pam_pwdb.so
password required /lib/security/pam_cracklib.so retry=3
password required /lib/security/pam_pwdb.so use_authtok

NOTE

Throughout this chapter, we will often refer to the PAM modules without the trail-
ing .so. For example, we will refer to /lib/security/pam_pwdb.so as simply
pam_pwdb in the text but /lib/security/pam_pwdb.so will be used in all exam-
ples, as required.

Linux05 Page 86 Monday, February 7, 2000 10:06 AM

 PAM Administration 87

The second, preceded by the group: keyword, pertains to information associ-
ated with groups. After the section header, you see keywords concatenated
with + symbols, called lists. Each list represents the collection of databases
that are merged to form the records for each user or group. For example, the
unix+shadow list under the user: section is a list consisting of the contents of
the /etc/passwd and /etc/shadow files. The nis+unix+shadow entry specifies
the list containing NIS3 (formerly yp) records as well as the contents of the
/etc/passwd and /etc/shadow files. The entries for groups are entirely similar.

When the pam_pwdb module is invoked, it in turn invokes the pwdb library.
The pwdb library will find the first entry that matches the user or group passed
to it by pam_pwdb, based on the entries in /etc/pwdb.conf. Thus order is impor-
tant in that file. The lists that appear first are searched first and pwdb stops at
the first match.

The pam_pwdb Module The pam_pwdb module is capable of operating in sup-
port of all four module types.

Module type auth. When the auth type is specified, it functions to authenti-
cate the user by prompting the user for a password and querying pwdb with
the username/password pair. It can take the following arguments: debug,
use_first_pass, try_first_pass, nullok, and nodelay. All other arguments
supported by pam_pwdb but not by the auth module type are silently ignored.
Any other arguments will be logged as errors through syslog, but will not
affect the function of the module. The first three arguments are described in
Table 5.3 on page 85.

The nullok argument allows accounts with no passwords. Of course, you
would never specify this argument, right? The default behavior, therefore, is
that this module treats accounts with no passwords as if they were locked
accounts. This is good!

The nodelay argument causes this module to return immediately on fail-
ure. Normally this module will delay prior to reporting an authentication fail-
ure, making it slower for an attacker to try to guess passwords.

So what is the purpose of the line:

auth required /lib/security/pam_pwdb.so

Example 5-4 The /etc/pwdb.conf File

This is the configuration file for the pwdb library
#

user:
 unix+shadow
 nis+unix+shadow
group:
 unix+shadow
 nis+unix+shadow

3. See Chapter 3 for further details about NIS. NIS was formerly known as Yellow Pages (YP).

Linux05 Page 87 Monday, February 7, 2000 10:06 AM

88 Been Cracked? Just Put PAM On It! Chap. 5

in Example 5-3 on page 86? It causes users to be prompted for their old pass-
word prior to being prompted (by pam_cracklib) for their new password! Cool,
huh? The root user is excepted from this requirement.

Module type password. When the pam_pwdb module is used as module type
password, it performs the task of updating the password. This means that,
when a user invokes the passwd command, upon successfully entering a new
password (as determined by pam_cracklib), pam_pwdb will update the new
password with the pwdb library. The acceptable argument types are debug;
nullok; not_set_pass; use_authtok; try_first_pass; use_first_pass; md5;4

bigcrypt; shadow; radius; unix. Those arguments not already discussed are
summarized in Table 5.4.

Notice in Example 5-3 on page 86, the use_authtok argument is specified.
This means that pam_pwdb will use the new password it receives from
pam_cracklib. Essentially, pam_cracklib controls the choice of the new pass-
word, but pam_pwdb actually does the updating.

4. RSA Data Security, Inc., MD5 Message-Digest Algorithm.

NOTE

The use of md5 (MD5 is discussed in Chapter 3) or bigcrypt (a modified crypt(3)
that allows for up to a 16-character password) arguments instead of the default, tra-
ditional UNIX crypt(3) for hashing is highly recommended. It allows for longer
passwords that may be harder to guess by programs such as Crack (discussed in
Chapter 12). In Red Hat 6.0, choosing MD5 is an install time option.

Table 5.4 Arguments for pam_pwdb Module Type password

Argument Description

nullok Allows for the changing of a null (nonexistent) password. For the
reasons outlined earlier, use of this argument is not recommended.

not_set_pass Causes this module to ignore passwords from previous modules and
disallows this module from passing new passwords to subsequent
modules.

use_authtok This argument forces the module to set the new password to the one
received from the previously stacked module.

md5,
bigcrypt

Instead of using the conventional UNIX password hashing algo-
rithm (invoked through the crypt function call), you may choose
one or the other of these.

shadow,
radius, unix

Allows for the transfer of passwords from one database to another
through the pwdb library.

Linux05 Page 88 Monday, February 7, 2000 10:06 AM

 PAM Administration 89

Module type account. When using pam_pwdb as module type account, its
purpose is to verify account information of the user. This includes validating
that the user has an account, what password aging parameters, if any, are
associated with the user, and whether or not the user needs to be warned
about a pending password expiration or offered advice on the choice of a new
password. As this module type, pam_pwdb recognizes only the debug argument.

Module type session. When using pam_pwdb as module type session, its
sole purpose is to log the username and service type to syslog, once at login
and then subsequently at logout. It recognizes no arguments.

The pam_cracklib Module The pam_cracklib module is intended to work
only with the password module type. It’s purpose is to check a password for
strength and for length, both elements being configurable with arguments
described below. This module functions only in a stack, since it has no updat-
ing capabilities. It requires the libcrack library and the cracklib_dict Crack
dictionary, both of which are found in /usr/lib of the Red Hat 5.2/6.0 distribu-
tion. As you can see, this module depends heavily on elements of the Crack
utility, which is discussed in Chapter 12.

The flexibility of PAM is evidenced by the fact that this is not the only
password strength checking PAM module. Another is pam_passwd+, which is
available at

http://www.us.kernel.org/pub/linux/libs/pam/modules.html

The arguments available to pam_cracklib are described in Table 5.5.

Table 5.5 Arguments for pam_cracklib

Argument Description

debug This argument writes additional module behavior information to
syslog, but does not log passwords.

type=STRING This argument replaces the string UNIX with STRING in the mes-
sages it generates, such as New UNIX password:.

retry=n This is the number of retries this module allows a user when chang-
ing a password. The default is 1.

difok=n This represents the number of characters in the new password that
must be different from the old password. The default is 10. Regard-
less of this limit, however, any new password that has at least half
the characters different from the old will be accepted.

minlen=n This argument specifies the minimum password length + 1. By
default it is set to 9 which means the minimum password length is
actually 10. To further confuse the issue, this minimum length may
actually be reduced depending upon the values specified for the
*credit parameters listed below.

Linux05 Page 89 Monday, February 7, 2000 10:06 AM

90 Been Cracked? Just Put PAM On It! Chap. 5

In addition to the configurable options in Table 5.5, the pam_cracklib
checks the new password for strength by

1. Verifying that the new password is not the reverse of the old password.
2. Verifying that the new password is not a simple case change of some

characters of the old password.
3. Checking if the new password is in the cracklib_dict. If it is, it warns

the user but does not force another password choice.

The Effect of Stacking pam_pwdb and pam_cracklib For Module Type
password In this section, we will take a look at how pam_cracklib interacts
with pam_pwdb in the stack shown in Example 5-3 on page 86.

Recall that in Example 5-3 the two stacked entries appeared in /etc/
pam.d/passwd.

password required /lib/security/pam_cracklib.so retry=3
password required /lib/security/pam_pwdb.so use_authtok

The first entry invokes pam_cracklib and prompts the user for his or her new
password (remember that the auth module type pam_pwdb entry is responsible
for prompting the user for his or her old password, for authentication). After
the user has supplied the new password, pam_cracklib requests that it be
repeated for verification. Once completed, pam_cracklib performs its checks to
see if the password is acceptable. If so, it passes the new password to pam_pwdb
which has the use_authtok argument meaning it will accept this new pass-
word and request the pwdb library to update the appropriate database.

lcredit=n The value specified here is the number of characters by which the
minlen value is reduced by virtue of having at least one lowercase
character in the new password. The default is 1. Can be set to 0 to
eliminate the credit.

ucredit=n The value specified here is the number of characters by which the
minlen value is reduced by virtue of having at least one uppercase
character in the new password. The default is 1. Can be set to 0 to
eliminate the credit.

dcredit=n The value specified here is the number of characters by which the
minlen value is reduced by virtue of having at least one numeric
character in the new password. The default is 1. Can be set to 0 to
eliminate the credit.

ocredit=n The value specified here is the number of characters by which the
minlen value is reduced by virtue of having at least one nonalpha-
numeric character in the new password. The default is 1. Can be set
to 0 to eliminate the credit.

Table 5.5 Arguments for pam_cracklib (Continued)

Argument Description

Linux05 Page 90 Monday, February 7, 2000 10:06 AM

 PAM Administration 91

Let’s take a look at the power and flexibility of these modules by consid-
ering an example. Suppose that we would like to use md5 instead of the stan-
dard UNIX crypt(3) mechanism for hashing purposes. This is a good idea,
because popular password-guessing tools like Crack require significantly more
CPU resources to guess passwords (see The White Hat Use of Crack on
page 337). The major benefit of using md5 is that you can require longer pass-
words—20, 30, or even more characters. Let’s look at an example requiring 20-
character passwords. We’ll also set the type argument to see if our users are
paying attention. Example 5-5 shows what the stack might look like if we
impose these changes in /etc/pam.d/passwd.

Now that we have made these changes, let’s see what happens to the
user, mary, when she tries to change her password in Example 5-6. She is
offered three opportunities to select a password. This is due to the retry=3
argument to pam_cracklib (see Example 5-5 on page 91). Actually, it appears
that Mary is attempting to make good password choices. Unfortunately she
doesn’t know about the changes to PAM and therefore doesn’t know that she
needs to choose a longer password. So you, being the responsive administrator,
inform her that she needs to use a 20-character password. “What?!” she
replies. And you gently tell her that she can use a passphrase. Happy now, she
goes about her task (Example 5-7).

Example 5-5 Using md5 and minlen in /etc/pam.d/passwd

password required /lib/security/pam_cracklib.so minlen=20\
 retry=3 type=SECRET
password required /lib/security/pam_pwdb.so md5 use_authtok

WARNING

If you make changes similar to what is shown in Example 5-5, you must also change
all equivalent instances of pam_pwdb and pam_cracklib using module type pass-
word. In Red Hat 5.2, this would minimally include the files chfn, chsh, login,
rlogin, su, and xdm in /etc/pam.d.

Example 5-6 Unsuccessful Password Change

$ passwd
Changing password for mary
(current) UNIX password: j3n#Ky
New SECRET password: Rt!72g
BAD PASSWORD: is too simple
New SECRET password: 8x@$iI
BAD PASSWORD: is too simple
New SECRET password: P5-+yh
BAD PASSWORD: is too simple
New SECRET password: 8x@$iI
passwd: Authentication token manipulation error
$

Linux05 Page 91 Monday, February 7, 2000 10:06 AM

92 Been Cracked? Just Put PAM On It! Chap. 5

Notice that the message displayed by pam_cracklib contains our type
entry, New SECRET password:. This change does not appear in the message
from pam_pwdb—(current) UNIX password:—because pam_pwdb does not sup-
port the type argument.

While she chose a password of 20 characters (spaces count!), she wouldn’t
have been required to, because the default values of dcredit, ucredit, lcredit,
and ocredit (see Table 5.5 on page 89) are 1 each. Because of her password
choice, she would have a credit of 4, which would have allowed her to choose a
password as short as 16 characters in length.

PAM and Passwords Summary

Figure 5.2 reviews Example 5-3 on page 86 in its entirety. When Mary
executes the passwd command, Linux-PAM is invoked. Linux-PAM reads
the /etc/pam.d/passwd file and executes each module listed in order. First

Example 5-7 Successful Password Change

$ passwd
Changing password for mary
(current) UNIX password: j3n#Ky
New SECRET password: I need a #%$3+ raise
Retype new SECRET password: I need a #%$3+ raise
passwd: all authentication tokens updated successfully
$

NOTE

Normally, the passwords displayed in Example 5-6 and Example 5-7 are not visible.
They are shown here for clarifying the examples.

Fig. 5.2 PAM-Controlled Password Change

pam_cracklib type password

Linux-PAMpasswd

/etc/pam.d/passwd
1

2

3

3 & 5

pam_pwdb type auth

pam_pwdb type password

pam_pwdb type account

645

Linux05 Page 92 Monday, February 7, 2000 10:06 AM

 PAM Administration 93

Mary is authenticated with her old password; this occurs due to the pam_pwdb
entry with module type auth. Second, pam_pwdb is invoked with module type
account to verify Mary’s account (and to check, for example, if password aging
permits her to change it now). Third, Mary is prompted for the new password
by the pam_cracklib entry with module type password. Fourth, and finally,
after Mary has successfully entered a new password, pam_pwdb with module
type password updates the pwdb library. Now she has a new password.

Notice that all four entries in /etc/pam.d/passwd use the control flag
required, which means that all four modules must be satisfied in order for the
password change to be successful.

Now that we have a fundamental understanding of PAM, let’s go on and
look at some of the other services it manages.

PAM and login

The /etc/pam.d/login configuration file is read by Linux-PAM whenever the
login (/bin/login) program is executed. Example 5-8 is a sample of this file.
From the previous section, we have a good idea of what is going on here. Let’s
examine the details of the action of each module type.

Module Type auth There are three modules stacked for type auth. The first
is pam_securetty. This is an auth module type only. It accepts no arguments.
Its sole purpose is to check /etc/securetty against the device of the login
attempt, if the user logging in is root. It will fail only if someone is trying to
log in as root from a device not in /etc/securetty. Since this module is
required, a failure here would cause the login to fail. Recall, however, that the
control flag, required, will still allow subsequent modules to be executed, and
therefore the user will not be refused access until after all three modules in
this stack are executed.

The second module is pam_pwdb. As discussed in PAM and Passwords on
page 86, its role here is to authenticate the user.

NOTE

The root user is not subject to any of these constraints and may set any password for
any user.

Example 5-8 Sample /etc/pam.d/login File

auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_pwdb.so
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_pwdb.so
password required /lib/security/pam_cracklib.so minlen=20\
 retry=3 type=SECRET
password required /lib/security/pam_pwdb.so md5 use_authtok
session required /lib/security/pam_pwdb.so

Linux05 Page 93 Monday, February 7, 2000 10:06 AM

94 Been Cracked? Just Put PAM On It! Chap. 5

The third module in the stack is pam_nologin. This is also an auth-only
module type that accepts no arguments. Its purpose is to check for the exist-
ence of /etc/nologin. If /etc/nologin exists, then no users, except root, are
allowed to log in; if /etc/nologin contains a message, it is displayed. For
example, if the /etc/nologin is

System down for maintenance until 2/28/99 at 4pm

then Example 5-9 exhibits the system’s behavior when the user joe attempts
to telnet to the system.

By default, Joe will actually be able to attempt to log in three more times,
but of course the result will be the same. Existing login sessions are not
affected by the /etc/nologin file.

This file is normally used for purposes of system maintenance, but it also
is beneficial in case of a system breach. This topic is discussed in Chapter 3.

Normally, the /etc/nologin file does not exist and the user, once authen-
ticated, will be granted access. The subsequent modules in /etc/pam.d/login
are then invoked.

Example 5-9 Attempted Login with the Presence of /etc/nologin

$ telnet livfreeordie
Trying 10.1.1.1...
Connected to livfreeordie.
Escape character is '^]'.

Red Hat Linux release 5.2 (Apollo)
Kernel 2.0.36 on an i686
login: joe
Password:
System down for maintenance until 2/28/99 at 4pm

Login incorrect

login:

OH, BY THE WAY…
Did you ever wonder about how to get rid of the message that appears when you
connect to a system? In Example 5-9, it is the two-line message beginning with “Red
Hat Linux.” This message gives away information about your system, which does
not reflect good security practice. On Red Hat 5.2/6.0, the message displayed reflects
the contents of /etc/issue.net for remote connections and /etc/issue for local
connections. At this point, you may be tempted to rush off and modify these files to
suit your needs. Don’t. The files are rewritten at every reboot! In order to modify
these files, you must modify /etc/rc.d/rc.local. /etc/rc.d/rc2.d/S99local is
a symbolic link to /etc/rc.d/rc.local, which is executed upon entering run level
2. Be sure to replace this message with something appropriate, maybe something
like “This is a restricted system. All activities are logged.” But whatever you do,
don’t reveal the operating system, hardware, or other information that may be used
against you. And don’t use words like “Welcome”! There are many other ways to
replace this message, some of which will be discussed at various points in this text.

Linux05 Page 94 Monday, February 7, 2000 10:06 AM

 PAM Administration 95

Module Types account, password, and session The pam_pwdb entry for
the account module type, as previously described, performs the task of check-
ing the user’s account. If the user’s password has expired, for example, the
entries with module type password will be invoked and the events described in
PAM and Passwords on page 86 will occur. The session entry is for the exclu-
sive purpose of logging connection information to syslog.

Many other PAM configuration files besides /etc/pam.d/login incorpo-
rate the use of these modules and module types. Since each configuration file
represents an application, it follows that any application that requires
authentication by password will incorporate some or all of the modules and
module types in /etc/pam.d/login. Included among these are rsh, rlogin, su,
ppp, chfn, chsh, and ftp. Bear this in mind whenever you decide to make
changes to one of these configuration files. For continuity, and for security,
you will ordinarily make changes across the board. Think carefully if you
decide not to change a particular configuration file whenever you change
others.

Next let’s take a look at some additional restrictions that may be
imposed through PAM.

Time and Resource Limits

You may also wish to impose access time restrictions and resource limitations
on your users. PAM affords the opportunity to impose such limitations
through the modules pam_time and pam_limits, respectively.

Using pam_time This module is used with module type account only. Although
it accepts no arguments, it does expect a configuration file, /etc/security/
time.conf (Red Hat 5.2/6.0; other distributions may vary), to supply it with
login location and time limitations. The absence of this file has the effect of
not restricting access in any way. The limitations apply to all users, includ-
ing root.

Suppose that you’d like to impose some limits on user access to a particu-
lar system. Take a look at the account module type entries in Example 5-10.
The pam_time and the pam_pwdb entries both use the control flag required. This
has the effect of causing the account verification step to proceed. For example,
if Mary’s password has expired, when she attempts to log in, she will be so
informed and refused access regardless of the limitations imposed by
pam_time. Let’s assume that Mary’s password has expired and that she is
attempting to connect to the system livfreeordie outside the limits imposed
by /etc/security/time.conf (see The /etc/security/time.conf File on
page 96). Example 5-11 shows what happens if Mary attempts to log in under
these assumptions and /etc/pam.d/login is configured as shown in Example
5-10. Even though Mary is logging in outside of her approved time, the only
information she gets is that her password has expired.

Linux05 Page 95 Monday, February 7, 2000 10:06 AM

96 Been Cracked? Just Put PAM On It! Chap. 5

If you reverse the entries and set the control flag to requisite for
pam_time, the behavior is quite different. Example 5-12 shows the new configu-
ration. Example 5-13 shows what happens with the new configuration when
Mary attempts to log in.

The moral of these examples is: watch your order and control flag set-
tings. Experiment before you implement! Make sure the configuration settings
provide the functionality you expect.

Next we turn our attention to the time.conf file.

The /etc/security/time.conf File. This file controls access time and
login location by device when using the pam_time module. Each line in the file
is a record, called a rule, except lines beginning with # which are comments.
Each record has the following syntax:

services;ttys;users;times

This syntax is further detailed in Table 5.6.

Example 5-10 Partial Configuration File Using pam_time required

account required /lib/security/pam_pwdb.so
account required /lib/security/pam_time.so

Example 5-11 Login Attempt with Expired Password and Outside of Permitted Times 1

$ telnet livfreeordie
Trying 10.1.1.1...
Escape character is '^]'.

Red Hat Linux release 5.2 (Apollo)
Kernel 2.0.36 on an i686

login: mary
Password:
Your account has expired; please contact your system administrator

User account has expired
Connection closed by foreign host.
$

Example 5-12 Partial Configuration File Using pam_time.so requisite

account requisite /lib/security/pam_time.so
account required /lib/security/pam_pwdb.so

Example 5-13 Login Attempt with Expired Password and Outside of Permitted Times 2

$ telnet livfreeordie
Trying 10.1.1.1...
Escape character is '^]'.

Red Hat Linux release 5.2 (Apollo)
Kernel 2.0.36 on an i686

login: mary
Password:

Permission denied
Connection closed by foreign host.
$

Linux05 Page 96 Monday, February 7, 2000 10:06 AM

 PAM Administration 97

The phrase logical list referenced in Table 5.6 means that the special
characters, described in Table 5.7, are used as conditional operators.

Logical operators may be mixed. For example, tty* & !ttyp* means that
any serial device is allowed for this rule, but all pseudo-devices are not.

The syntax used to specify days in timed.conf is summarized in
Table 5.8. These codes are then used with time ranges, all times being speci-
fied by the 24-hour clock. For example, Wd0800-1600 means weekends between

Table 5.6 Description of /etc/security/time.conf Entries

Parameter Description

services A logical list of the services associated with PAM. Multiple records with
the same service are acceptable. Examples include login, rsh, and su.

ttys A logical list of device(s). The login device is stored in PAM_TTY. Nor-
mally this includes such devices as tty1 and tty2 for the console, ttyS0
and ttyS1 for serial ports, and ttyp1 and ttyp2 for pseudo-devices nor-
mally associated with network and X Window connections.

users A logical list of (valid) users. May include root.

times A logical list of times at which this rule applies.

Table 5.7 Conditional Operators Used in /etc/security/time.conf

Operator Function Examples

& logical AND user1 & user2—means this rule applies to both
user1 and user2.

| logical OR tty1 | tty2—means this rule applies to either tty1
or tty2.

! logical NOT ! login—this rule does not apply to the login service.

* wildcard Matches any value, its meaning depending on its loca-
tion in a field.

Table 5.8 Day Codes in /etc/security/timed.conf

Day Code Description

Mo, Tu,
We, Th,
Fr, Sa,

Su

Each code individually applies to the day of the week it indicates.
These codes may be concatenated; for example, MoTuWe means
Monday, Tuesday, and Wednesday.

Wk and Wd Wk means weekdays while Wd means weekends (Saturday and Sun-
day). Note that, for example, MoWk means all weekdays except Monday.

Al All seven days. Note that, for example, AlSu means all days except
Sunday.

Linux05 Page 97 Monday, February 7, 2000 10:06 AM

98 Been Cracked? Just Put PAM On It! Chap. 5

the hours of 8 A.M. and 4 P.M.. Notice that there are no spaces between the day
code and the time.

Example 5-14 shows a series of entries in a sample /etc/security/
time.conf file. In this example, the root user has access to all services all of
the time so long as root logs in from tty1. The users—joe, bill, and jane—
have access every day of the week between 8 A.M. and 6 P.M. from any device
so long as they connect via login or rsh. The user guest may log in from any-
where, Monday through Friday between the hours of 9 A.M. and 4 P.M., except
between 12 noon and 1 P.M. Finally, any user may access the system using ftp
from any source Monday through Friday between the hours of 9 A.M. and 4
P.M. All other users are unrestricted.

This file is not order dependent. If there are entries that overlap, the
least permissive (actually, the intersection of all entries) is used. Remember,
you must place a pam_time entry in each file in /etc/pam.d for those services
for which you want to restrict access. If you are going to limit access using
pam_time, consider placing entries in at least the following files (and hence
the associated services will be limited) in /etc/pam.d: ftp, login, ppp, rexec,
rlogin, rsh, su, and xdm.

Using pam_limits You may additionally restrict user accounts by imposing
limits on the system resources available to each user login session. This may
be useful in limiting system-based DoS attacks. The pam_limits module oper-
ates as a session module type only. It supports two arguments—debug and
conf=/path/to/config_file (the default configuration file is /etc/security/
limits.conf). It does not impose any limits on the root account.

The /etc/security/limits.conf file is used to impose limits on a per-user
or per-group basis. All limits specified apply to a single session. Each line in the
file is a record, except for those beginning with #. The syntax of a record is

username|@groupname type resource limit

Example 5-14 Sample /etc/security/time.conf File

*;tty1;root;Al0000-2400
login & rsh;*;joe|bill|jane;Al0800-1800
login;*;guest;Wk0900-1600&!Wk1200-1300
ftp;*;*;Wk0900-1600

WARNING!
If you use an entry of the form

;;*;!AL0000-24000

in the /etc/security/time.conf file, you will lock out all users, including root,
from the system! Should you find yourself locked out of the system, see the section
Recovering a Corrupt System on page 24 in Chapter 3 for recovery procedures.

Linux05 Page 98 Monday, February 7, 2000 10:06 AM

 PAM Administration 99

where username|@groupname specifies that either a username or a groupname
preceded with @ may be used. The wildcard character * is acceptable and rep-
resents all users (hence all groups). The type field is either the hard or soft
parameter; hard imposes a fixed limit and soft specifies a default limit. The
resource parameter is one of the items described in Table 5.9. The limit
parameter is the limit itself on the associated resource.

It is important to note that the limits imposed are on a per-session basis.
The total limitation may be controlled with the maxlogins parameter. Limits
may be completely disabled for particular users with the special character, -,
an instance of which is shown in Example 5-15 . In this example, all users are
limited to a resident set size of approximately 10 megabytes (MB) per session.
All users may also have a maximum of only four simultaneous logins. It is this
value that sets the overall maximum per user. The user, bin, has all limits dis-
abled, including the previous entries in the file. The remaining limitations in
the file are additional limitations for the users and groups indicated. The user
ftp is allowed only 10 logins (this is an excellent limit to impose on anony-
mous ftp accounts since it limits the number of simultaneous logins). All
users in the group managers have a process limitation of 40 and all users in the
group developers have a memlock limit of approximately 64 MB.

Example 5-15 Sample /etc/security/limits.conf File

* hard rss 10000
* hard maxlogins 4
bin -
ftp hard maxlogins 10
@managers hard nproc 40
@developers hard memlock 64000

Table 5.9 Limitable Resources in /etc/security/limits.conf

Resource Description

core Limits the size of a core file (KB*)

*kilobytes

data Maximum data size (KB)

fsize Maximum file size (KB)

memlock Maximum locked-in memory address space (KB)

nofile Maximum number of open files

rss Maximum resident set size (KB)

stack Maximum stack size (KB)

cpu Maximum CPU time in minutes

nproc Maximum number of processes

as Address space limit

maxlogins Maximum number of logins allowed for this user

Linux05 Page 99 Monday, February 7, 2000 10:06 AM

100 Been Cracked? Just Put PAM On It! Chap. 5

Of course, you must determine the limits necessary for each system at
your site. Make sure you place the entry

session required /lib/security/pam_limits.so

in each appropriate file in /etc/pam.d.

Access Control with pam_listfile

Any PAM-aware application may be given an access control list with
pam_listfile. This is an authentication-only module that takes a number of
arguments, as displayed in Table 5.10. In order to clarify Table 5.10, we’ll look
at two examples.

Suppose that we have a guest account on our system and we would like
to disable chsh for guest. The chsh command allows a user to change his or her
default shell in /etc/passwd to any shell listed in /etc/shells. Since chsh is a
PAM-aware application, we can use pam_listfile to implement this restric-
tion (no problem!). Add the pam_listfile entry to the existing /etc/pam.d/
chsh configuration file as shown in Example 5-16. By now, everything in this
file should be familiar except the pam_rootok entry (and of course the
pam_listfile entry, which we haven’t finished talking about). Actually, the
pam_rootok entry is quite simple. Notice that it uses the control flag suffi-
cient meaning that, if this module is satisfied, none of the other auth module
types needs to be executed. The pam_rootok module does what you’d expect. If
it’s root, it’s OK! So, in this case, if root wants to change any user’s shell, root
will not be authenticated (not prompted for a password).

Now back to pam_listfile. In Example 5-16, the argument onerr=fail is
set. This means that, if there are any error conditions generated by the execu-
tion of this module, the module will fail. Since it is a required module, this fur-
ther implies that authentication will fail and the user will not be allowed to
change his or her shell. Errors will be logged to syslog, so you may view them
in /var/log/messages. Unless you are debugging in a safe environment (i.e.,
not connected to a production environment), this is the recommended setting
for this argument.

The remaining arguments deal with the access control file, which in this
case is /etc/security/nochsh. The item=user argument tells pam_listfile

Example 5-16 The chsh Configuration File with a pam_listfile Entry

auth sufficient /lib/security/pam_rootok.so
auth required /lib/security/pam_listfile.so onerr=fail\
 item=user sense=deny file=/etc/security/nochsh
auth required /lib/security/pam_pwdb.so
account required /lib/security/pam_pwdb.so
password required /lib/security/pam_cracklib.so minlen=20 retry=3
password required /lib/security/pam_pwdb.so md5 use_authtok
session required /lib/security/pam_pwdb.so

Linux05 Page 100 Monday, February 7, 2000 10:06 AM

 PAM Administration 101

that it should expect to find usernames—one per line—in /etc/security/
nochsh. The sense=deny argument tells pam_listfile that /etc/security/
nochsh is a deny list; that is, any user listed in that file will cause
pam_listfile to fail and therefore (because of the required control flag) cause
authentication to fail and disallow the user from changing the shell.

All that remains is to create /etc/security/nochsh and list the users to
whom we wish to deny chsh capability. Here is an example file:

guest
joe

The two users, guest and joe (we don’t trust him anymore), will not be able to
successfully execute chsh, as the user guest demonstrates in Example 5-17.
Hopefully, the flow of events is becoming clear. When guest executes chsh, a
PAM-aware application, Linux-PAM is invoked and the auth stack in /etc/
pam.d/chsh is executed. Referring back to Example 5-16 on page 100, the first
auth module invoked is pam_rootok. Since guest is not root, that module fails
and pam_pwdb is invoked and causes the password prompt. The user guest suc-
cessfully enters the correct password (you’ll have to trust me here) and execu-
tion is passed to pam_listfile, which checks its deny list and finds guest in it,
causing authentication to fail (hence the generic Password error message).

Example 5-17 Failed chsh Attempt Due to pam_listfile

$ telnet livfreeordie
Trying 10.1.1.1...
Escape character is '^]'.

This is a restricted system. All activity is logged.
login: guest
Password:

livfreeordie$ chsh -s /bin/bash
Changing shell for guest.
Password:
Password error.
livfreeordie$

Table 5.10 Arguments to pam_listfile

Argument Description

onerr Takes either succeed or fail. If an error occurs, such as an unreadable
configuration file, should this module return success or failure?

sense Takes either allow or deny. This tells the module whether the list is an
allow or deny list.

file Requires the absolute pathname to the configuration file.

item One of user, tty, rhost, ruser, group, or shell. It tells the module
what to look for in the configuration file.

apply Takes a username or a groupname preceded by @. It is only meaningful if
item is set to tty, rhost, or shell.

Linux05 Page 101 Monday, February 7, 2000 10:06 AM

102 Been Cracked? Just Put PAM On It! Chap. 5

Consider another example. Suppose that we want to limit the users to
which others may su—we want to restrict su use generally (not just su to root)
to a specific set of users. We add a pam_listfile entry to /etc/pam.d/su as dis-
played in Example 5-18. This time we are using an allow list. Just place each
allowed username, one per line, in the /etc/security/suok file. For example, if
our /etc/security/suok contains the users:

root
mary
bill
jane
efram

then these are the only users that will be accepted as a user argument to su.
Anyone may execute su, but only to become one of the users in this list. Exam-
ple 5-19 shows what happens when paul tries to su to guest and then to root.
The su attempt to guest fails because guest is not in the /etc/security/suok
file. The su to root, however, succeeds because root is in the /etc/security/
suok file and Paul knows the root password.

Notice that the error message is not indicative of the actual failure. If
you review the previous failure messages from other PAM modules, you’ll see
that this is a feature of PAM. The idea is to not reveal any information to the
user through error messages. As an administrator with root access, you may
always check out the log files. By default, you will find PAM-generated log
messages in /var/log/messages (these files and syslog, in general, will be dis-
cussed in Chapter 8).

Note that when sense=allow changes to sense=deny in Example 5-18, the
/etc/security/suok file becomes a deny list, meaning that a user would not be
able to su to any of the users in the list. This is particularly useful if you wish
to implement sudo (sudo is discussed in Chapter 9) and completely disallow su
to root.

Example 5-18 The su Configuration File with pam_listfile

auth required /lib/security/pam_listfile.so onerr=fail \
 item=user sense=allow file=/etc/security/suok
auth required /lib/security/pam_pwdb.so
account required /lib/security/pam_pwdb.so
password required /lib/security/pam_cracklib.so minlen=20 retry=3
password required /lib/security/pam_pwdb.so md5 use_authtok
session required /lib/security/pam_pwdb.so

Example 5-19 Failed su Attempts Due to pam_listfile

$ whoami
joe
$ su - guest
Password:
su: incorrect password
$ su -
Password:
#

Linux05 Page 102 Monday, February 7, 2000 10:06 AM

 PAM Administration 103

PAM and su

Unlike the last pam_listfile example, which restricts the users that may be
switched to with su, pam_wheel is used to specifically restrict the successful
execution of su to the root user. It does so by utilizing a special group called
wheel with the GID of 0. Its default behavior is to allow only members of the
wheel group to su to root when this module is in force. This is another authen-
tication-only module. Its arguments are described in Table 5.11. This module
has some arguments that you really don’t want to use. The use_id argument
causes the pam_wheel to use the effective UID of the user. In this way a non-
wheel group member could su to a wheel group member and then su to root.
This is probably not the behavior you seek.

The trust argument could cause wheel members to be able to su to root
without a password, depending on the way in which modules are stacked.
Avoid these two arguments, unless you are debugging or are otherwise pre-
pared for their consequences.

On many releases of Linux, there is a GID 0, the root group. You may
wish, therefore, to create a wheel group with a different GID—for example
GID=10 (Red Hat 5.2/6.0 does this for you)—then use the group argument to
pam_wheel. Example 5-20 displays a representative /etc/pam.d/su file. Make
sure that you have a group called wheel in /etc/group. Any member of that
group will be allowed to su to root. All other users will get a Password incor-
rect error message, even if they know the correct password.

Example 5-20 The /etc/pam.d/su File with pam_wheel

auth required /lib/security/pam_wheel.so group=wheel
auth required /lib/security/pam_pwdb.so
account required /lib/security/pam_pwdb.so
password required /lib/security/pam_cracklib.so minlen=20 retry=3
password required /lib/security/pam_pwdb.so md5 use_authtok
session required /lib/security/pam_pwdb.so

Table 5.11 Arguments of pam_wheel

Argument Description

debug Generates additional output to syslog.

use_id Uses the current process UID and not that returned by
getlogin. This may result in the use of an effective UID
and is not recommended for production use.

trust Causes this module to succeed if the user is a member of the
wheel group. This option may cause members of wheel to
become root without a password. Be very careful when using
this argument.

deny Reverse the logic of this module.

group=groupname Instead of allowing users in the group wheel, allow the users in
groupname.

Linux05 Page 103 Monday, February 7, 2000 10:06 AM

104 Been Cracked? Just Put PAM On It! Chap. 5

Using pam_access

The pam_access module is another access control module. It is similar to
pam_listfile in that it is a generic access control mechanism. It differs from
pam_listfile, however, in two ways. First, it supports only module type
account. Essentially, this difference means that we have similar access control
functionality available to use for module type auth (pam_listfile) and module
type account (pam_access). This allows us to control applications that do not
support one or the other module type. An example of such a situation is given
in the section Further Restricting Access with PAM on page 304 in Chapter 11.

Second, it requires the configuration file, /etc/security/access.conf.
Entries in this file are of the form

permission : users : origins

Each of the fields in /etc/security/access.conf are described in Table 5.12.
When the pam_access module is invoked, the /etc/security/access.conf file
is searched for the first entry that matches the username and tty or hostname
pair. If no match is found, then access is granted.

For example, suppose that you wish to restrict login access to certain
users from certain hosts on a particular system; let’s call the local host pyra-
mid. Example 5-21 illustrates a sample /etc/security/access.conf file that
provides access restrictions on pyramid. The line numbers in Example 5-21 are
provided for clarity and are not part of the file. In this case, line 2 disallows all
access from the domains, evil.com and spam.org. Line 3 disallows all access at
the console except by root. Line 4 grants access to all users except root if the
connection is arriving from the 172.17.0.0 network. Line 5 grants access to all
members of the wheel group and to the user paul from the host leghorn. Line 6
denies all other access.

Table 5.12 Fields in /etc/security/access.conf

Field Description

permission Either + indicating access is allowed or – indicating access is denied.

users A space-separated list of usernames, groupnames, or netgroups. All
netgroup names must be preceded by @. The special wildcard ALL may
also be used to always match in this field. You may also use the special
keyword EXCEPT to conditionalize a list.

origins A space-separated list of ttynames, hostnames, domainnames (any
name beginning with a “.”), or network addresses (the network portion
of the IP address ending in a “.”). The wildcards ALL (which always
matches) and LOCAL (which matches any name not ending with a “.”)
may also be used. You may also use the special keyword EXCEPT to con-
ditionalize a list.

Linux05 Page 104 Monday, February 7, 2000 10:06 AM

 PAM Administration 105

Now, simply add the line

account required /lib/security/pam_access.so

as desired to any of the configuration files in the /etc/pam.d directory. Exam-
ple 5-22 shows this entry in bold in the /etc/pam.d/login file.

Any attempted access from a denied location will result in a Permission
denied error message, as shown in Example 5-23, where Paul attempts to log
in at the console.

All failed attempts due to pam_access are logged in /var/log/messages by
default. See Chapter 8 for further information about log files.

Using pam_lastlog

This module provides the capability of displaying the last time-logged-in mes-
sage and the You have new mail message as module type auth and session,
respectively. The former is of greater concern than the latter, as it gives away
information about the computing environment. Fortunately, pam_lastlog gives
you control over what is displayed.

The pam_lastlog module may operate in either module type auth or ses-
sion. As an auth module it serves the purpose of controlling lastlog (see One
Other Command on page 153 of Chapter 7 for more details) displays after a

Example 5-21 Sample /etc/security/access.conf File

1. # access.conf file
2. -:ALL:.evil.com .spam.org
3. -:ALL EXCEPT root: tty1
4. +:ALL EXCEPT root:172.17.
5. +:wheel paul:leghorn
6. -:ALL:ALL

Example 5-22 Adding pam_access to the /etc/pam.d/login File

auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_pwdb.so
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_pwdb.so
account required /lib/security/pam_access.so
password required /lib/security/pam_cracklib.so minlen=20\
 retry=3 type=SECRET
password required /lib/security/pam_pwdb.so md5 use_authtok
session required /lib/security/pam_pwdb.so

Example 5-23 Failed Login Attempt Due to pam_access

pyramid login: paul
Password:

Permission denied
pyramid login:

Linux05 Page 105 Monday, February 7, 2000 10:06 AM

106 Been Cracked? Just Put PAM On It! Chap. 5

user login. In this mode it takes the arguments listed in Table 5.13. To use this
module, simply put a record similar to the following line in all appropriate
/etc/pam.d configuration files (e.g., login, rlogin, rsh).

auth optional /lib/security/pam_lastlog.so nohost

Notice the optional control flag. If you use required instead, no one will be
able to log in! You also probably want to put this line last in your auth stack.
In this example, the lastlog message will be displayed, but no previous host
information will be shown.

As a session module, pam_lastlog informs the user about electronic mail.
It takes no arguments and once again must use the optional control flag. Here
is a sample entry:

session optional /lib/security/pam_lastlog.so

Once again, make sure that this entry appears in each appropriate /etc/pam.d
configuration file.

Using pam_rhosts_auth

The evils of the Berkeley r-commands were extolled in Chapter 1, where we
looked at some of the vulnerabilities associated with these utilities. In
Chapter 11, we will look at completely replacing the Berkeley r-commands.

NOTE

Another application may display lastlog or e-mail information after the PAM
authentication steps are complete. Any such applications would obviate the configu-
ration of pam_lastlog.

Table 5.13 Arguments of pam_lastlog as Module Type auth

Argument Description

debug Provides verbose output to syslog.

nodate Suppresses the display of the date of last login by this user.

noterm Suppresses the display of the terminal name used in the last login of
this user.

nohost Suppresses the display of the host from which this user last logged in.
By utilizing this argument, hostnames in your environment are not dis-
closed.

silent Suppresses the entire lastlog message.

never If the user has never logged in before, this will cause a welcome message
to be displayed.

Linux05 Page 106 Monday, February 7, 2000 10:06 AM

 PAM Administration 107

Here we will look at using pam_rhosts_auth to limit or altogether eliminate
trusted hosts.

This module is an auth-type module only. It accepts the arguments listed
in Table 5.14. Configuration of this module is highly system specific and site
dependent. Allowing this functionality internally may be acceptable and, in
the eyes of your users, necessary. On certain systems, such as restricted serv-
ers, systems within perimeter networks,5 and firewalls, $HOME/.rhosts and
/etc/hosts.equiv files should be strictly regulated if not completely forbidden.

You will want to place entries for this module in /etc/pam.d/rsh and
/etc/pam.d/rlogin and any other PAM-aware service that uses these files.
To affect the traditional implementation (allow trusted hosts), use an entry
such as

auth sufficient /lib/security/pam_rhosts_auth.so

at the top of the auth stack (minimally, this module must appear before the
module in the stack that prompts the user for his or her password) in /etc/

5. Perimeter networks (or DMZs) typically consist of systems that are available to external
access. See the references listed in General Firewall References on page 488 of Chapter 16 for
further information.

Table 5.14 Arguments to pam_rhosts_auth

Arguments Description

debug Generates more output to syslog.

no_hosts_equiv Disables /etc/hosts.equiv functionality.

no_rhosts Ignores $HOME/.rhosts files.

no_warn Suppresses warning messages to the user. As of this writing, the
module generates no warning messages anyway!

privategroup Normally, if a $HOME/.rhosts file is writable by other than the
owner, this module will assume the file has been compromised and
return a failure. This argument will allow the $HOME/.rhosts file
to be writable by the owner and the owner’s group if the owner’s
group is a UPG.* This will be true if the UID and GID are identical
and greater than 500.

*See Group Account Management on page 69 of Chapter 4 for a discussion of UPGs.

promiscuous The default behavior of this module is to ignore + wildcards in
$HOME/.rhosts and /etc/hosts.equiv files. This argument will
allow such wildcards. Use of this argument cannot be advised.
See Chapter 3.

suppress Suppresses error messaging to syslog.

Linux05 Page 107 Monday, February 7, 2000 10:06 AM

108 Been Cracked? Just Put PAM On It! Chap. 5

pam.d/rsh and /etc/pam.d/rlogin. A more restrictive entry could be placed in
these same files on sensitive systems. For example, an entry of the form

auth required /lib/security/pam_rhosts_auth.so no_rhosts

at the top of the auth stack (or, again, before a module generating a password
prompt) would completely disable the use of $HOME/.rhosts files, but would
preserve the use of /etc/hosts.equiv (which does not apply to root).

One-Time Password Support

Both pam_opie and pam_skey support OTP. These are discussed in Chapter 6.

PAM and the other Configuration File

So far we have discussed discrete PAM-aware applications and how to grant or
limit access through PAM by those applications. It turns out that, if a PAM-
aware application has no configuration file of its own, Linux-PAM will supply
a special set of modules from the /etc/pam.d/other file. This file is normally
used to reject all other requests and, by default, will likely appear as in Exam-
ple 5-24. For example, if you download a PAM-aware application, such as ssh
1.2.27 (see Chapter 11), and fail to provide an ssh configuration file in /etc/
pam.d, then the other file is used, and, if it is as in Example 5-24, then ssh con-
nections will always fail. Furthermore, pam_deny generates no messages what-
soever! Unfortunately this means that you may end up spending a lot of time
trying to figure out why something doesn’t work. All pam_deny does, as its
name suggests, is deny all requests for any available module type.

But there is good news! There is another module, the pam_warn module,
that logs to syslog informational messages, including the service requested,
the terminal name, the username, the remote username, and the remote host-
name. The pam_warn module operates only for module type auth and password.
So you may want to modify your /etc/pam.d/other file as in Example 5-25. In
this way, all other services that make auth or password requests will have log
entries generated. The pam_warn module is not limited to use with pam_deny. It
may be used in any auth or password stack to generate additional log messages.

Example 5-24 A Common /etc/pam.d/other File

auth required /lib/security/pam_deny.so
account required /lib/security/pam_deny.so
password required /lib/security/pam_deny.so
session required /lib/security/pam_deny.so

Example 5-25 Administrator Friendly /etc/pam.d/other File

auth required /lib/security/pam_warn.so
auth required /lib/security/pam_deny.so

Linux05 Page 108 Monday, February 7, 2000 10:06 AM

 PAM Logs 109

This additional logging capability of pam_warn has obvious debugging
advantages, but it also has advantages from the security perspective. For
example, if you have identified some suspicious activity, you may want to add
pam_warn in the auth stacks surrounding the services in question. You may also
want to use the debug argument on those modules that support it for more
detailed auditing information. Pay close attention when you do this because
your log files will get large quickly. And, if the bad-guys are already in, they’re
reading the log files, too!

There is one other module in this category. It is the antithesis of
pam_deny. It is called pam_permit and—you guessed it—it categorically allows
access. It operates for all module types and should be used with great caution,
if ever.

Additional PAM Options

There are many other PAM modules, some of which are discussed throughout
this book. In Available PAM Modules on page 109, many of the modules, both
currently available and under development, are listed; in PAM-Aware Appli-
cations on page 112, many available applications are described.

PAM LOGS

PAM modules log to facility auth in syslog. What this means is that, in your
log, messages will end up in the file specified by the auth facility entry in sys-
log. On Red Hat 5.2/6.0, the default location is /var/log/messages. We discuss
syslog in Chapter 8.

AVAILABLE PAM MODULES

Table 5.15 provides a list and brief description of many available PAM mod-
ules. Some come with the Red Hat (or other) distributions, while others
require downloading. Those that come with Red Hat 5.2/6.0 are so noted
(and may be found at http://www.redhat.com/); for all others, a web site is
specified and an author, if known, is provided. If your system already sup-
ports these modules, they will be found in either /lib/security or /usr/lib/
security. If you download and add one, make sure that you put it in the cor-
rect directory.

account required /lib/security/pam_deny.so
password required /lib/security/pam_warn.so
password required /lib/security/pam_deny.so
session required /lib/security/pam_deny.so

Example 5-25 Administrator Friendly /etc/pam.d/other File (Continued)

Linux05 Page 109 Monday, February 7, 2000 10:06 AM

110 Been Cracked? Just Put PAM On It! Chap. 5

Table 5.15 Overview of PAM Modules

Module Availability Description

pam_access Red Hat
5.2/6.0

Reads the file /etc/security/access.conf to deter-
mine whether the user/tty or user/host pair is to be
granted or denied access.

pam_console Red Hat
6.0 or pub-
licly avail-

able

Sets up permissions and device ownership when logging
in at a physical console device. Expects the /etc/secu-
rity/console.perms file for permission and ownership
parameters; expects the /etc/security/con-
sole.apps/ directory for services. Supports auth
required and session optional module type/control
flag pairs.

pam_cracklib Red Hat
5.2/6.0

Supports only password module type. Used for checking
password choices against the cracklib and disallows any
choices found there.

pam_deny Red Hat
5.2/6.0

Supports all module types. Always returns a failure.

pam_env Red Hat
5.2/6.0

Supports auth module type only. Uses the /etc/secu-
rity/pam_env.conf file to set shell environment vari-
ables.

pam_filter Red Hat
5.2/6.0

Supports all module types. This module offers the capabil-
ity of capturing as much as every keystroke of a session.
Requires a filter program, not included.

pam_ftp Red Hat
5.2/6.0

Supports module type auth only. Implements anonymous
ftp.

pam_group Red Hat
5.2/6.0

Supports module type auth only. Sets GID based upon
/etc/security/group.conf file (syntax nearly identical
to /etc/security/time.conf, which is discussed in The
/etc/security/time.conf File on page 96).

pam_if Publicly
available

Supports all module types. A simple conditional used to
manage stack execution behavior. Available from http://
www.dcit.cz/~kan/pam/. This module is discussed in
OPIE and PAM on page 143.

pam_lastlog Red Hat
5.2/6.0

Supports module type auth only. Used to control the dis-
play of last login information.

pam_limits Red Hat
5.2/6.0

Supports module type session only. Uses the /etc/
security/limits.conf file to determine whether or not
users may log in based on available system resources.

pam_listfile Red Hat
5.2/6.0

Supports module type auth only. Allows for the use of
access control lists based on users, ttys, remote hosts,
groups, and shells.

pam_mail Red Hat
5.2/6.0

Supports module type auth only. Provides the You have
new mail service.

Linux05 Page 110 Monday, February 7, 2000 10:06 AM

 Available PAM Modules 111

pam_nologin Red Hat
5.2/6.0

Supports module type auth only. Provides the check for
the existence of the /etc/nologin file, which, if it exists,
will display the contents of the file and fail auth.

pam_opie Publicly
available

Supports module type auth only. Presents an OPIE
challenge and requires an OPIE one-time password.
Available from http://www.tho.org/~andy/pam-
opie.html. This module is discussed in OPIE and
PAM on page 143.

pam_permit Red Hat
5.2/6.0

Supports all module types. Always returns success.

pam_pwdb Red Hat
5.2/6.0

Supports all module types. Replaces the pam_unix_*
modules. Colocates authentication databases depending
upon the /etc/pwdb.conf file.

pam_pwdfile Publicly
available

This module was announced as this book was in its final
stages. It is an authentication-only module that allows for
the specification of alternate password files. In this way
you can configure separate passwords for various services.
For example, you could have one set of usernames and
passwords for IMAP and an entirely different set for
everything else. You will find this module at http://
espresso.ee.sun.ac.za/~cabotha/
pam_pwdfile.html.

pam_radius Red Hat
5.2/6.0

Supports module type session only. Provides the session
service for users authenticated through RADIUS.

pam_rhosts_auth Red Hat
5.2/6.0

Supports module type auth only. Provides for authentica-
tion through $HOME/.rhosts files. May be configured to
allow or deny such authentication.

pam_rootok Red Hat
5.2/6.0

Supports module type auth only. Allows the root user
access without requiring a password. Makes sense only
when used with the sufficient control flag.

pam_securetty Red Hat
5.2/6.0

Supports module type auth only. Applies only to root.
Checks to see if root is logging in from one of the devices
listed in /etc/securetty. If so, it returns success; other-
wise it fails.

pam_shells Red Hat
5.2/6.0

Supports module type auth only. Authenticates users if
their default shell is listed in /etc/shells.

pam_stress Red Hat
5.2/6.0

This module is used for debugging and stress testing
PAM-aware applications.

pam_tally Red Hat
5.2/6.0

Supports module type auth only. Keeps track of the num-
ber of login attempts made and can deny access based
upon a specified number of failed attempts.

Table 5.15 Overview of PAM Modules (Continued)

Module Availability Description

Linux05 Page 111 Monday, February 7, 2000 10:06 AM

112 Been Cracked? Just Put PAM On It! Chap. 5

PAM-AWARE APPLICATIONS

Table 5.16 is a list of many of the applications that are PAM-aware, meaning
that the application has the necessary calls to invoke PAM. As in Table 5.15,
those available in the Red Hat 5.2/6.0 distribution are so noted.

IMPORTANT NOTES ABOUT CONFIGURING PAM

This chapter provides an introductory look at PAM. Many examples are
described and some usage tips are provided. Doubtless, however, many of you
will have configuration ideas of your own. This section provides some simple,
but important, notes about configuring PAM for your environment.

pam_time Red Hat
5.2/6.0

Supports module type account only. Restricts access
based on user, tty, service, and time as specified in /etc/
security/time.conf.

pam_tcpd Publicly
available

Supports module type auth only. Implements
TCP_wrappers-style access control, logging, and function-
ality through /etc/hosts.allow and /etc/hosts.deny.
TCP_wrappers is discussed in Chapter 10. The module is
available from http://web.tis.calinet.it/macchese/
pam/pam_tcpd.html.

pam_unix_acct
pam_unix_auth

pam_unix_passwd
pam_unix_session

Red Hat
5.2/6.0

These modules provide similar functionality to pam_pwdb
except that the authentication database is either /etc/
passwd or NIS.

pam_unix-new Publicly
available

Incorporates the above four modules into one and imple-
ments many of the features of pam_pwdb. Available at
ftp://hunter.mimuw.edu.pl/pub/users/baggins/
PAM/.

pam_warn Red Hat
5.2/6.0

Supports module types auth and password only. This
module generates a log message including the remote
user and remote host (if available) through the syslog
utility.

pam_wheel Red Hat
5.2/6.0

Supports module type auth only. Provides a way to
restrict access to root to those users who are members of
the wheel group.

pam_xauth Red Hat
6.0 or pub-
licly avail-

able

Supports module type session with control flag
optional only. This module automatically passes X Win-
dow System magic cookies to other users (for example,
through su), thus allowing effective UIDs to open X appli-
cations without requiring the use of the xhost command.

Table 5.15 Overview of PAM Modules (Continued)

Module Availability Description

Linux05 Page 112 Monday, February 7, 2000 10:06 AM

 Important Notes about Configuring PAM 113

First, and foremost, always copy your existing, functioning /etc/pam.d
configuration files before making any changes. It is entirely possible to lock
out all users, including root, through PAM misconfiguration. By retaining
working copies, you will always be able to boot into single-user mode (see A
Note about LILO on page 22 in Chapter 3 for information about booting into
single-user mode), correct the configuration, and bring the system back up.

Second, configure your /etc/pam.d directory with the permissions read/
write/execute by root only, and configure its contents read/write by root only.
No one else needs to read the contents of this directory. You may accomplish
this with

chmod u=rwx /etc/pam.d
cd /etc/pam.d
chmod u=rw *

Table 5.16 Overview of PAM-Aware Applications

Application Availability

chfn Red Hat 5.2/6.0

chsh Red Hat 5.2/6.0

ftp Red Hat 5.2/6.0

imap Red Hat 5.2/6.0

linuxconf Red Hat 5.2/6.0

linuxconf-pair Red Hat 5.2/6.0

login Red Hat 5.2/6.0

mcserv Red Hat 5.2/6.0

other Red Hat 5.2/6.0

passwd Red Hat 5.2/6.0

ppp Red Hat 5.2/6.0

rexec Red Hat 5.2/6.0

rlogin Red Hat 5.2/6.0

rsh Red Hat 5.2/6.0

samba Red Hat 5.2/6.0

su Red Hat 5.2/6.0

sudo*

*Discussed in Chapter 9.

Publicly Available

vlock Red Hat 5.2/6.0

xdm Red Hat 5.2/6.0

xlock Red Hat 5.2/6.0

Linux05 Page 113 Monday, February 7, 2000 10:06 AM

114 Been Cracked? Just Put PAM On It! Chap. 5

Third, test your configuration ideas in a safe, preferably nonproduction
environment. Try as many possible variations as you can think of before going
live. Remember, the order of PAM modules in a stack is significant. Different
orders will produce different behavior. Normally you will want pam_pwdb last
in the auth stack. Don’t forget the control flag settings either. The use of differ-
ent control flags will cause radically different behavior in many cases. The
same holds true for any arguments associated with the different modules.
Remember, different module types for the same PAM module will support dif-
ferent arguments.

Fourth, and last, Linux is publicly available software. So are the PAM
modules. There aren’t any exacting quality assurance programs before release
and distribution. In fact, quite frequently, you are the quality assurance mech-
anism! In short, your success with PAM will vary depending upon the release
you obtained, the version of Linux you are running, your hardware platform,
and perhaps other factors. Use the resources in Appendix A and any other
support mechanisms available to you.

THE FUTURE OF PAM

From the contents of this chapter, it is hopefully clear that a lot of work has
been done with PAM. The future is actually quite bright. The Open Software
Foundation (OSF) released RFC 86.0 (RFCs are defined in Request for Com-
ment on page 40 of Chapter 3) in October 1995 specifically for PAM. Addi-
tional work is being done to enhance the control flag option to allow system
administrators to specify actions based on return codes from each module.
Many of the modules noted in Table 5.15 on page 110 are under development,
as is true of many of the applications listed in Table 5.16 on page 113. Given
its inherent flexibility, there is no doubt that PAM will be with us for a while.

SUMMARY

This chapter described pluggable authentication modules. We looked at a
number of examples for configuring and using PAM. We also reviewed many of
the available PAM modules and applications. We noted the flexibility and
security features provided by PAM.

FOR FURTHER READING

The best documentation available for PAM is the Linux-PAM System Admin-
istrator’s Guide, which may be found at

http://www.kernel.org/pub/linux/libs/pam/

Linux05 Page 114 Monday, February 7, 2000 10:06 AM

 For Further Reading 115

or one of its mirrors. The guide is available in numerous formats including
postscript and html.

On-Line Documentation

/usr/doc/pwdb-0.55/pwdb.txt
/usr/doc/pam-0.64/ps/pam.ps
/usr/doc/pam-0.64/rfc86.0.txt

Linux05 Page 115 Monday, February 7, 2000 10:06 AM

Page 116

To Be Blank

Linux05 Page 116 Monday, February 7, 2000 10:06 AM

